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Summary. It is shown that a Banach space E does not contain �1 iff certain subsets

of E∗ (the dual space of E) are relatively compact. This result has some consequences

concerning Dunford-Pettis and limited sets in E; moreover, a result concerning operators

defined on Banach spaces with the Dunford-Pettis property follows from the main result.

1. Introduction. Let E be a Banach space having a dual space denoted by E∗. If

a bounded subset K of E∗ is such that for any weakly null sequence (xn) ⊂ E one has

limn supK |xn(x
∗)| = 0, we shall say that it is an (L) set ([7]).

The main purpose of our note is to characterize Banach spaces not containing �1 using

(L) sets. This result will have several corollaries concerning Dunford-Pettis and limited

sets ([1], [2]); we recall that a subset K of a Banach space is called a Dunford-Pettis set

(resp. a limited set) iff for any weakly null (resp. weak∗ null) sequence (x∗
n) ⊂ E∗ one has

limn supK |x∗
n(x)| = 0. Other corollaries (partially known) related to the Dunford-Pettis

property and Gelfand-Phillips spaces will follow; we recall that a Banach space E verifies

the Dunford-Pettis property iff any its relatively weakly compact subset is a Dunford-Pettis

set and it is a Gelfand-Phillips space iff any its limited subset is relatively compact ([1],

[4]). At the end, we derive a result concerning operators defined on a Banach space with

the Dunford-Pettis property; also this result has in turn some consequences.

∗Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by

M.P.I. of Italy (40% - 1983).



2. Results. Our main result uses the following characterization of Banach spaces not

containing �1 due to Odell (see [14], p. 377).

Theorem 1.A Banach space E does not contain �1 iff any completely continuous opera-

tor from E to any Banach space F is compact (Here completely continuous signifies that it

maps weakly null sequences into norm null sequences; recently many authors call such an

operator a Dunford-Pettis operator).

The central theorem of the paper is the following

Theorem 2.A Banach space E does not contain �1 iff any (L) subset of E is relatively

compact.

Proof. K be an (L) set in E∗. Following [7] we define an operator T : E → B(K) (B(K)

is the usual space of all bounded scalar functions on K) by putting T (x)(x∗) = x∗(x). We

can see easily that T is completely continuous and hence it is compact, from Theorem 1.

Also, T ∗ is compact. Now, let x∗ ∈ K; we define Fx∗ in (B(K))∗ by putting Fx∗(f) = f(x∗)

for any f ∈ B(K); this implies that T ∗(Fx∗)(x∗) = x∗(x) and hence T ∗(Fx∗) = x∗ for any

x∗ ∈ K. Since K = {T ∗(Fx∗) : x∗ ∈ K} ⊂ T ∗(B(B(K))∗) we have that K is relatively

compact. Conversely, let T : E → F be an arbitrary completely continuous operator; by

taking as K the subset T ∗(BF∗) we easily show that T ∗ (and hence T ) is compact. The

proof is complete.

Remark 1. It is known ([6]) that a Banach space E does not contain �1 iff E∗ satisfies

the weak Radon-Nikodym property. Hence, Theorem 2 gives a characterization of dual

Banach spaces with the weak Radon-Nikodym property. Sometimes we shall use this

equivalence without any advice.

Theorem 2 has some corollaries which we now prove. The first is related to Dunford-

Pettis sets

Corollary 1.Let F be a closed subspace of a dual Banach space E∗ with E not con-

taining �1. Then, any Dunford-Pettis set in F is relatively compact.

Proof. Let K be a Dunford-Pettis set in F ; obviously, it is even a Dunford-Pettis set



in E∗. We consider a weakly null sequence (xn) in E; if we think of it as of a sequence

in E∗∗ we easily see that it converges weakly to θ. The definition of a Dunford-Pettis set

says that K is an (L) set in E∗. An appeal to Theorem 2 concludes the proof.

Corollary 1 has an immediate consequence; thus the proof is omitted.

Corollary 2.Let F be a Banach space in which there exists a Dunford-Pettis set which

is not relatively compact. then, if F ⊂ E∗, E has to contain �1.

Corollary 2 improves the following well-known result (see [5], p. 213).

Corollary 3.If F is a Banach space with the Dunford-Pettis property but without the

Schur property and F ⊂ E∗, then E contains �1.

The following is another consequence of Corollary 1.

Corollary 4.Let E and F be Banach spaces. We suppose that F is a closed subspace

of a dual Banach space Z∗ with a predual Z not containing �1. Then, any completely

continuous operator T : F ∗ → E∗ is compact, provided that T = P ∗, for some operator

P : E → F .

Proof. Easily we can see that if T = P ∗, P : E → F then T is completely continuous iff

P maps bounded sets into Dunford-Pettis sets; Corollary 1 gives that P is compact. The

proof is complete.

Now, we use Corollary 1 in order to indicate a class of Gelfand-Phillips spaces; these

Banach spaces have been recently investigated in [2] and in a paper (still unpublished as

far as we know) cited in [4], p. 150; they are important in connection with the compactness

of the range of Pettis integrals (see [4], p. 150).

Corollary 5.Let F be a closed subspace of a dual Banach space E∗ with E not con-

taining �1. Then, F is a Gelfand-Phillips space.

Proof. From the definitions of Dunford-Pettis sets and limited sets it follows that any

limited set is a Dunford-Pettis set. Hence, Corollary 1 concludes the proof.



This corollary improves a result cited in [4], p. 150, which only affirms that dual Banach

spaces of spaces not containing �1 are Gelfand-Phillips spaces. Moreover, we observe that

the class of Gelfand-Phillips spaces obtained here is different from those indicated in [2],

i.e. Banach spaces with the Schur property, separably complemented Banach spaces and

Banach spaces having weak∗ sequentially compact dual balls; indeed, from the results of

[8] follows the existence of dual Banach spaces having the weak Radon-Nikodym property,

but not separably complemented or having the Schur property. Further, we observe that

dual Banach spaces E∗ with weak∗ sequentially compact dual balls have the weak Radon-

Nikodym property; indeed, if (xn) is a bounded sequence inE ⊂ E∗∗, there is a subsequence

(xk(n)) converging weak∗ in E∗∗; hence, (xk(n)) is a weak Cauchy sequence in E; an appeal

to well-known results (see [5], for example, and [6]) concludes our proof; this implication

cannot be reversed, as it is observed in [15]. We also observe that Corollary 5 is a partial

improvement of a result of Musial ([9]) about the range of certain countably additive

measures.

The following corollary concerns with operators defined on Banach spaces having the

Dunford-Pettis property.

Corollary 6.Let F a Banach space having the Dunford-Pettis property and let E∗ be a

dual Banach space with E not containing �1. Then, any operator T : F → E∗ is completely

continuous.

Proof. Let (yn) be a weakly null sequence in F . We first prove that (T (yn)) is a

Dunford-Pettis set in E∗; an appeal to Corollary 1 will finish the proof. Let (x∗∗
n ) ⊂ E∗∗

be a weakly null sequence; we have T (yn)(x
∗∗
n ) = yn(T

∗(x∗∗
n )), for any n ∈ N ; since

T (x∗∗
n )

w−→ 0 in F ∗ the Dunford-Pettis property of F implies that T (yn)(x
∗∗
n ) → 0 (we are

using a characterization of the Dunford-Pettis property which is due to Grothendieck; see

[3] for example). This easily gives that (T (yn)) is a Dunford-Pettis set.

The corollary is a generalization of a result of [12] which in turn improves a theorem of

[13]. Moreover, it allows us to enlarge a characterization of Banach spaces not containing

�1 due to Pelczynski ([11]).



Corollary 7.The following facts are equivalent

i) E does not contain �1,

ii) any operator from a Banach space F having the Dunford-Pettis property to E∗ is com-

pletely continuous,

iii) the same as ii) with F = L1([0,1]).

Proof. i) implies ii) is Corollary 6; ii) implies iii) is obvious; iii) implies i) is in [11].

Corollary 8.Let (S,Σ, µ) be a finite measure space and let F be a Banach space such

that F∗ has the Schur property. Assume that µ is not purely atomic. Then, L1(µ,F) cannot

be isomorphic to a subspace of a weakly compactly generated dual Banach space.

Proof. In [1] it is shown that L1(µ,F) has the Dunford-Pettis property. On the other

hand a weakly compactly generated dual space has weak∗ sequentially compact dual balls

(see [5]) and we have already observed that such a space has the weak Radon-Nikodym

property. Corollary 6 concludes our proof.

This improves a well-known result of Gelfand-Pelczynski (see Corollary 9 of p. 83 of

[3]); also Corollary 10 of p. 83 of [3] can be obtained as a corollary of Corollary 6.

Other consequences are the following results

Corollary 9.Let F be a Banach space having the Dunford-Pettis and the Reciprocal

Dunford-Pettis property (see [7]). Any operator T : F → E∗, with E not containing �1, is

weakly compact.

Proof. Corollary 6 says that T is completely continuous. The definition of the Recip-

rocal Dunford-Pettis property gives that T is weakly compact.

Corollary 10.Let (S,Σ, µ) be a finite measure space and let E be a Banach space not

containing �1. Any operator T : E → L1(µ) is strictly cosingular (for the definition of

strict cosingularity we refer the reader to [10]).

Proof. T : L∞(µ) → E∗ is weakly compact from Corollary 9; indeed, the space L∞(µ)

as a C(H)−space has both the Dunford-Pettis ([3]) and the Reciprocal Dunford-Pettis

property ([7]). Thus T is weakly compact. Since L1(µ) has the Dunford-Pettis property



([3]), a result of Pelczynski (see [10]) concludes our proof.

Added in proof. The referee has observed that Corollary 7 was obtained by Fakhoury

in the paper Sur les espaces de Banach ne contenant pas �1(N), Math. Scand., 41 (1977),

277-289, in the identical wording.
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